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A new family of life modcls proposed by Glaser (1980) hag dbnﬂ+tios;

p—

of the form C(91,92,Qj)cxp{-91t-92t24-9512ﬁ$t}. The Tamily includes all

! : gamma distributions, all exponential distributions, all normal distribu-

tions left truncated at zero, and a variety of distributions havinyg

bathtub shaped failurc rate functions. In this paper statistical in-

ference for the family is considered with an cmphasis on determining

whether the sampled model fits the bathtub category. =$Z:\\\\

~.

1. INTRODUCTION

A family § of life distributions has been proposcd by Glaser (1980).

it is characterized by the collection of density functions of the form

£(t) = c(o 2};2

93)exp[-91t-9 +93 logt]}, O<t<w, (1.1)

1’92’

g O

where C is a normalizing constant, and the (natural) parameter space is

the union of {(91,92,03): ~® < 91 <‘n,92 >0, 93 > -1} and

{(91,92,93) 10, > o, o, = 0, 8, > - 1}. The special case 8, = 0 gives

the class of all gamma densities., The special case 92 > 0, 93 =0

gives the class of all truncated normal densities with left truncation

at 0. Usefulness of the family derives from its failure rate proper-

ties, (Cf. Glaser (1980).) Lc¢t r(t) = f(t)/F(t) denote the failure

..... OF SCIENTIFIC RESEARCH (AFS
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rate function, where F(t) = [ f(y)dy. 1f @, >0 and 6, >0, then r(t)

3
is monotonme increasing (IFR); however, if 92 > 0 and 93 < 0, then r(t)
is bathtub shaped (BT): precisely, there exists tO > 0 such that r(t)
is strictly decreasing for t < to and strictly increasing for t > to.
For the gamma situation 92 = 0, r(t) is monotone decreasing (DFR) if

8., < 0, constant if @, = O (the exponential density case), and monotone

3 3

increasing if 93 > 0. The family thus constitutes a rich class of models,
encompassing all gamma distributions and all normal distributions left
truncated at zero, as well as a variety of distributions having bathtub
shaped failure rate functions. The latter property is of practical
concern, since a bathtub failure rate corresponds to the common phenome-
non of an item's improving with age initially and déteriorating with age
eventually., In this paper statistical inference for the family will be
considered with an emphasis on determining whether the model sampled fits
the bathtub category.

Maximum likelihood estimation of the parameters based on random
sampling is reviewed in Section 2. In Section 3 various hypothesis
tests are proposed which address the question of whether a bathtub
classification is appropriate,. Finally; in Section 4 maximum likelihood

estimation based on type Il censoring is considered. Included is an

estimate of the location of the bathtub's "plug."

2. MAXIMUM LIKELIHOOD ESTIMATION BASED ON RANDOM SAMPLING

Maximum likelihood estimation of the parameters under random sampling

is discussed by Glaser (1978). The maximization is complicated by the
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different roles played by 91 depending on whether it is positive, zcro,
or negative. A re-parametrization motivated by ‘Iell 's being basically

a scale parameter proves effective. The overall family of models

comprises the following four classes:

Class 1. f(t)-[xlr(o,p)}exp{-xt-e(xt)z](xt)"'l, A>0,06~0,p 0. 2.

@
where I'(8,p) is defined by I'(0,p) =J‘o exp[-y-eyz]yp ldy.

Class 2. f(t)-[6/A(e,p)]exp{6t-9(6t)2}(6t)p'1, $>0,06>0,p>0, (2.2)

[ ]
where A(9,p) is defined by A(@,p) .‘[‘o exp[y_eyZ}yp-ldy.

Class 3. £(t) =[2A/T(p/2)]exp{-(At)2}(At)?"L, 1 >0,6 >0, (2.3)
where I'(¢) is the gamma function, defined by

r(g) = I: exp{ -y)y"" lay.

Class 4. f£(t) =[A/T(p)lexp{-re}(Ae)*"1, x>0,p >0. (2.4)

Class 1 is formed from 91 >0, 92 > 0; Class 2 is formed from 91 <0,

92 > 0; Class 3 is formed from 91 = 0, 92 > 0; and Class 4 is formed

from 91 >0, O

if p > 1, and truncated normal if p = 1. Class 4 is the class of

2 ™ 0. For Classes 1, 2, and 3, f is BT if p <1, TFR

gamma densities, with f DFR if p < 1, TFR if pA > 1, and exponential
if p = 1,

As described by Glaser (1978), the maximum likelihood estimator of
(91,92,93) can be computed by the following algorithm. Let

L= (tl,...,tn) denote the observed random sample. For each Class i,

1=1,2,3,4, let H‘.E) denote the likelihood function based on the

YR -




corresponding parametrization (for example, L1(.E) = Ll(’s;k,e,p) =nl1]f(tj)

with £(t) taken from (2.1)), and let f,i(}_) denote the maximized likeli-

(1) (l)’p(l)

hood for the class. Hence, for Class 1, 1f (A ) denotes the

MLE of (A,9,p) based on (2.1), then L (t) is the maximized likelihood for
(1) (1) (1))

Class 1, i.e., L (t) =L, (t The overall maximum likeli-

~

hood is L(£) = max (t), and the MLE of (9 93) is the value of

1< 1<4 i 2’
(91,92,93) corresponding to the MLE of the parameters in the class with

the largest maximized likelihood. For example, if L('S) = L2(£), then

the MLE of (0,,8,,8,) 1s (-5 oD (52 2,y

Computational algorithms for the MLEs for the individual classes

are presented by Glaser (1978). To review, let (51,52,33) denote

1 1 2 1
GZtp Ity

to the system of equations sy /s2 = rz(e,p+1)/r(e,p)r(e,p+2),

L log tj) Then (;\(1),;(1),;(1)) is the solution

84" log 8, = v(8,p) - log[I'(8,p +1)/T(8,p)], and A =T(8,p + 1)/81F(9,p) .

where ¢(9,p) is defined by ¥(6,p) = (3/3p) logT(8,p)

= (re,p)]” '[' exp{-y - @y }y Yiogydy. Similarly, (3(2),;(2),;(2))

is the solution to the system of equations slzlsz-l\z(e,pﬂ)//\ (8,p)A(0,p+2),
8- logs, = £(®,p)-1og[A(®,p+1)/A(0,p)], and 6-1\(9.94’1)/91/\(9.9). where
€(8,p) is defined by ((8,p) = (3/3p) logA(®,p)

- (A8, ] J’:exp{y-eyzlyp'l togydy. Also, 0,00 )) is the

solution to the system of equations 33--;-1033 = 2*& ( ) - 108(") and

A2 - p/232. where §(°) is the psi function, defined by

$() = (/30108 T(®) = (1)1 [~ exp{-y]y* ' logydy. Finally, for

the well-known gamma parametrization, ()\(4)"’(4)) is the solution to

the system of equations s, - log s, = ¥(p)-logp and A = p/sl.

BTN T, VT s 4 ve
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3. BATHTUB RELATED HYPOTHESIS TESTS

In this section assume '1'1,...,'1’n constitutes a random sample taken
from some distribution in ¥ ., Certain hypothesis tests regarding the

condition of a bathtub failure rate function will be considered.

(a) Testing H :92 = 0 versus K :92 > 0.

The subclass of ¥ restricted to 92 = 0 represents the class of
gamma distributions, each of which has a monotone failure rate function.
The alternatives 92 > 0 include bathtub failure rate functions (e3 < 0).
The form of optimum critical regions depends on whether 93 is known.

1f 93 is known, a uniformly most powerful unbiased (UMPU) test
2.

exists based on the statistic V = 2Tj2/(sz Since for the gamma

situation (i.e., 92 = 0), V 1is distributed independently of ZTj
(cf. Glaser (1976)), it follows from the general theory given by Lehmann

(1959, Chapter 5) that the level o UMPU critical function is

vhere Co is determined by the equation

a= Pez-o{" < Cpl. 3.

An (n-1)-fold integral representation of (3.1) involving the Dirichlet

distribution allows computational evaluation of Co, Assume H :02 =0




Define

holds. For convenience, denote n-1 by m and 93 +1 by p.

- «n - . s
z, '1‘1/1_,1 Tj, i»1,...,m. Then the variableszl,...,zm have a Dirichlet

distribution with joint density

vz ) = [T /] 257 -2 2P,

h(zl,.
where 0 < z, <1, i=1,...,m, and O <ET z, < 1. Since

v=27 zi2 + -3 zi)z, (3.1) becomes

a=r .. h(z),ez )02 . 42, (3.2)
D(C,)
where D(Cy) = {(z,...,2):0<2z, <1, i=1,...,m, O <§3“1‘zi <1, and

2"1' ziz+ (1 -ETZI)Z < CO}. Evaluation of Co by means of (3.2) is com-

plicated by the awkward limits of integration. A tractable form of
(3.2) is achieved upon applying an orthogonal transformation which in-
corporates 2“1':1 as a variable. Consider the mxm orthogonal matrix,

9, obtained by the Gram-Schmidt orthogonalization process (cf. Kaplan

(1952)), and defined by

-1 .1 1 1 1

m 2 m 2 m 2 m 2 N m 2

-1 1 -1 -1 21

- [m(m-1)] 2 C(m-1)/m)%  -{m(m-1)] 2 fa@-1] 2 ... -fm@-1?2
.1 1 .1 .
L (m-1)(m-2)] 2 0 (m2)/(m=1)]®  LmDm2)] 2. .. =[(ml)(me2)
-1 1 -
o[ (m-2) (m=3)? 2 0 0 (@3)/(m2) . . . {(m2)(me3)]

. . ® .
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The transformation u = 0 z gives
1 l ~ ~ A
ul'm 2z1+...+m 2zm
1 1 1 1
u, = -Im(m-1)] 2 2, +[(m-1)/m)? 2, -[m(m-1)] Pz~ ... - [m(m-1)] 22
1 1 1 1
u3=-[(m-1)(m-2)] 2 +[(m-2)/(m-1)] z4 <[ (m-1) (m-2)) 2 ... =[(m=1)(m=2)] 2
1 L .1
uk--[ (m-k+2) (m=k+1) ] 2 +[(m-k+1)/(m-k+2)] z -[ (m=k+2) (m-k+1)] 2, Wl
e 21
u == 2 2z + 2 zz.
m 1 m
The restrictions, 0 < z1 <1, i=1,...,m, and 0 <. . T i < 1, translate to
1 L !
u €A, i=1,...,m, vhere A = (0,m 2), A,=(-[m(a-1] %, {(m-1)/m]%),
1 1 P §
2 2 .2

-4

A3 = (<[ (m-1)(m-2)]
o241 -ETzi)z <c

1°4
1

0 imposes marginally on u the restriction

1 1

N

w2/n = (1/n) (ng, - 12 < u) < mZ/n + (1/n)(nCy~ 12, Consequently, (3.2)

assumes the computable form

-t ..
"(ul....,um) tu €A NB,(Cy)

Jome

fIr@e)/r )00 2, Cuyy e yu )P 1om?a 3P Ny

.du

, [m=-2)/m-1)1%,...,A = (-2 2,2%). The condition

l'

i

(3.

. =[ (m-k+2) (m-k+1)]2zm

R
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1 11 1 _
2 2 2 2 1
where BI(CO) = (m“/n - (1/n)(nCo- 1°,m"/n+ (1/n)(nco- n»°y,
1
i-1 2 2 2
B,(Cy) = <o,co-[2:j=1uj +(1-m u)D), 1=2,...,m, and 2z, (ug,..u) y
is obtained from z = 2'2. For fixed CO' the right~hand-side of (3.3)
can be computed by numerical integration. Since the right-hand-side i

increases with CO’ the exact value of C0 corresponding to a given level

{

! o can be found by an easy trial and error process. 3
A large sample approximation of CO is readily obtained from multi-

variate central limit theorems. Assume H: 92 = 0 holds so that

4 T "Tn constitutes a random sample from a gamma distribution; for

1’
convenience, denote 93+1 by p and 91 by A . Since

E(T% = (p+k-1)...p/A%  for k=1,2,3,4,
8,0

it follows from the mult%variate Lindeberg-Levy central limit theorem

that under H:8,=0, n2(Y - ) S Ny(0,Z), where

: Y1n %z sz p(p + 1A 2+ 2+ e+
] Y = - y B = ,and T =
~n an) (%2 Tj ) ~ ( p/)‘ > ~ ( 29 (P + 1)/)\3 p/)\z

By applying the transformation g(Y n) = Yln/\’gn , it follows (cf. Rao

(1973, p. 387)) that

1
n?(8(y,) - 8(w) ¥ N(O,BZB'), wvhere




9

B = s(X /3%, 38 )Y )|y wiy = OFp% -2 G+1/Y. That s,
~ L

1
nz(nvn-(p+1)/p) i’. N(O,Z(p+1)/p3), where V=v . A large sample

approximation of Co is therefore
p+1 ‘ 1/2
%{“— 'zr;l;'z(p+1)/93] }

where z, is defined by Q(za) = l-a. In computing CO by the exact
multiple integral representation (3.3), a logical starting point would
be this large sample approximation.

If 93 is unknown, the UMPU test is conditional on the statistics -

2
i 3 3

Lehmann (1959 , Chapter 4), the critical function of the level & UMPU

). Denote T by U. From the general theory of

(r,8) = (X1,,L108T

test is

1 if u< Co(t:,s)

©(u,t,s) = ,
{ 0 if u > Cy(t,s)

where Co(t,s) is determined by the equation

a = P92=0{U < Co(c,s)l('r_s) = (t,s)]. (3.4

Consider the conditional distribution of (Tl""’Tn)’ given (T,S) = (t,s),

assuming H: 92 = 0 holds. Again for convenience denote ©, by )\ and

1

8,+1 by p. The joint density of (Tl....,'rn) is [knp/I‘n(p)]e(p‘l)s'u,

3

B I e T e e



S/n

Because of the independence of %T and (e /"_]-;T)n , it follows from

Glaser (1976) that the joint density of (T,S) is

(n-l)/2n1/2 _r_l_%l)]t-leps-)\t(n log-ﬁ'- $) (n--3)/2€n

e I 2m) /¢

s, t.n
(e /()
n

' for a certain function §n(-). Consequently, the conditional density of

(Tys...5T)), given (T,5) = (t,s), is
(n-l)/2n1/2

- - - - - n
[T(——nzl)/(Zﬂ) Tte ®(n log %-S) (n 3)/2§n1(€s/(§) ). The
essential point is that the conditional density is constant (i.e.,
uniform) in (tl,.. .,tn) over the region for which }Zt:j =t and I log tj =g,

The right~hand-side of (3.4) is thus the ratio of (n-2)-dimensional

? volumes,

ot 44

Volume{ (t e ) 1Tt 2 <c (t,8),Et =t,T log ¢yms)

1,... j
Volume{(tl, .. ,tn) : It

3
=t,Z logt

-s)

3 3

Unfortunately, computation of these volumes appears prohibitively com-
plicated. An exception is the rather uninteresting case n=3, where a
cubic equation can be obtained which generates Co.

A large sample approximation for Co(t,s) can be found by methods

gsimilar to those used in the known 93 case. Let

? elgp2 1 1 . .
:I-n (n Z’l‘j - 2’1‘], n ElogTj) . It follows from the mulcivariate
Lindeberg-Levy central limit theorem that under H : 92 = 0,
1

2 L
n (zn'g) - N3(2.§)u




o

p(p-’-l)/k2 2p (p+1)(2;,\‘l-3)/);4 2p(p+1)/)\1 (2,»+1)/).2‘

where = p/A\ and C= Zp(p+1)/k3 p/)\:z 1/
Y(p)-log ) (2p+1)/7\2 /) sty 4
More importantly, the relevant conditional distribution converges to
normality. Partition Y , u, and T as
1 (1) 2
SU " p(p+l)/A
Z‘1 = .]..-_- R }: = -——- = cearecsesces R and
=T b
1 ) ]
S, B ¥(p)-1log 1
4 ' 3 2
211 ! §12 20 (p+1)(2p4+3)/\ H 2p (p+1)A (2p+1) /)
----- ‘:---—- .------.----------.-:b------------------—-—----.
] [}
' 3 ‘ 2
= ! = 2p (p+1) /A H p/\ 1/ |
] [}
] 2 ]
1 } Za (2p+1)/2\ ¢ 1/ Ve

From the work of Steck (1959), it follows that the limiting conditional

(o

1 12T
2,1 . (D 2 < )_ (2))
distribution of n (nUn W ), given n < ls n
n n

1 e
- DZ(CZ:D . }_",(2)>’ i.e., given (::) - (::), is univariate normal
n n

- i

1

< -1 nn
) i (2)) SN | i
with mean L = n"L,, E,, ((;s ) £ and variance ¢ =I),-%;; I75 5 *

nn

L f o
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The difficulty introduced by the fact that the asymptotic conditional

distribution depends on the unknown parameters p and )\ will be overcome
by substituting estimators which are consistent under H. As shown by

Neyman (1955), such substitution does not affect the asymptotic proper-
ties of the test, When H: 92 = 0 is true, the (consistent) MLE, (p,)),
L
LN (2)
of (p,\) is the simultaneous solution to the equation (1 ) =

-]
n n

~

(cf. Class 4 of Section 2). Consequently, the (consistent) MLE, u, of

p under H is ;.. = 0. On the other hand, computation of 02 yields

2 4 ] -l. /?

o = (p/N)[2¢p+1) - (p¥'(p)-1) "], so that the (consistent) MLE, o,
2 /2\ "~ A4 ~ ~ ~ -1

of o under H is o = (p/N\)(2(p+1) = (p§'(p) -1) 7). Finally, the

/\ A A -

(consistent) MLE, p,(l), of p.(]') under H is u.(l = p(p+1)/k2. To

summarize, {f H:9, = 0 is true, the approximate conditional distribu-

~N

1 /(1\) - Tn\ tn
tion of n (;Un - n Yo, given <S )= (s ), is normal with mean O
n n

N =

and variance 1. A large sample approximation of the level o critical

D3, -
value Co(t,s), from (3.4), is therefore Co(t,s) = 'nu,( )-n zo.

N

(b) Testing H:0, >0 versus K:8, < 0.

3 3

if 92 > 0, the subclass of F restricted to 93 > 0 has only I[FR
fuhctions, whereas the subclass categorized by 03 < 0 has exclusively
BT functions. The test of H versus K, assuming 92 > 0, is therefore

a test of increasing failure rate against bathtub alternatives. For

the case 92 = 0, i.e., the gamma distribution, the test of H versus K

is equivalent to testing IFR versus DFR. A UMPU test for this situation

e aniadfes s,
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is provided by Glaser (1973). For the remainder of this section it will
be assumed that 92 is positive but unknown.

Z.ZTj,E logT.), the level «

Based on the notation (U,T,S) = (ZT

3 3

UMPU test is conditional on (T,U):

1 if 8 < Cy(t,u)

p(s,t,u) = s
{0 i1f s > Co(t,u)

where Co(t,u) is determined by the equation

o = P93=0£S < Co(t, W |(T,U) = (t,w)]. (3.5)

When 8, = 0, the sample Tl,...,Tn is truncated normal; however, the con-

3
ditional distribution of § given (T,U) = (t,u) does not appear tractable.
Fortunately, a large sample approximation of Co(t,u) can be found by

employing the method used in testing 92=0 with 93 unknown, let

1 1
n'I,log, Tj n Sn
Y = -1-7‘_.‘1' = L T From the multivariate Lindeberg-~
~n n 3 nn ‘ &
lgp? Ly
n b nn

Levy central limit theorem it follows that if 93=0, then
1

nzgn - E'.) '_t. N3(2,§), where B is the mean vector and § the covariance

matrix of (log TJ,TJ,TJZ)', assuming 93-0. Partition Y as
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ls
n n
Zm = %Tn , and partition y and I accordingly. Then (cf. Steck
Ly
n n

(1959)), for 93=0 the relevant asymptotic conditional distribution is

1 1 /(l\ R
normal: 1i.e., the conditional distribution of nz(;Sn - B ))/o. given
Tn tn (1 /2\
(U ) = (“ ), tends to N(0,1), where and ¢~ denote the respective
n n

(consistent) MLEs of p,(l) and o = Z11 " Z12 E;; Zyq» computed under the

assumption that 93 = 0, The large sample approximation of Co(t,u), from
1 -~
(3.5), 1s therefore Co(t,n) =ny L _ nzzao.
D o A
Computation of and ¢ is somewhat tedious. The MLE, (91,92),

>

~~
St

of (91,92) is the simultaneous solution to the equation

1
2t i = (C-90,)/20
n n ) u(z) ) 0 j> ( 1 2
1 ~
Y, =0j [1-91(0-91)/292]/292
1 21 -1
where, from (1.1), CiC(Ol,Oz.O) ﬁ(ﬂ/Oz) exp(e /40 )[1 6(91(29 ) 2 ]1
t ~
Suppose for definiteness that ( “) leads to a positive value for ©,. By
un /(\) 1

the invariance property of maximum likelihood, the MLEs, , and o , are

obtainable from the parametrization (inspired by Class 1 of Section 2),
2 2
[r/T(8,1)]exp{-At -8(At) ]}, A >0, © > 0. Here )\ = 9, and @ = 02/9l .

L] L]

" ]
so that \ = e, and @ = 02/91 . Since this parametrization gives

. [ 2 TMr(e, 1) Jexp -2t -e(At)2}log tdt = §(8,1) - log A, and

-l e Y TR~ T S < P A TP S e h R Wi © - eme T PR R A OO . AT 4
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> Re (8,248, )] > L&Ay 0,3)-1(0.1)]

I TN

1}
: 2
11(,2), i 1 r(e,1)r(e,3)-r-(e,2 1 [(e,)[(8.4)-I'(8,.2)r(8,3
1(0,2)-4(0,1)] | L ,
E7 A T@.D a2 r2ee.1) A rlee,1)
3 )
. H 2
. 1 I(e,3 ! 1 Tr(e,1r(e,4)-1(e,2)r(e,3) 1 T(e,1)r(e,5)-r"(e,3)
1 LGryq,3)-y¢0,10] | L U -
; \2 T(e,1) b3 ? (e,1) v r’e,1)
i

/(1\) " “
it follows that = $(0,1) - log\ and, after a bit of computation,

| ~ - . - 2, _ 2 e 24 - _ -
o = {¥'(8,1) - (8, (PyP)) " (8,8¢"85") = 28,8, (P,~P,) (P5-P,) (8,8,-8,8,)
2 2 2 2 2 2..1/2
81 = (8,1) and Py =y (0,1). Analogous computations of p,(l) and ¢ are

possible based on 91 negative or 91 zero. For negative 61 a parametriza-

tion of the Class 2 variety would be used; for 8, = 0, a Class 3 parametri-

1

zation would be used.

4. CENSORED SAMPLING

(a) Maximum likelihood estimation of the parameters based on
type II censored sampling.

A common sampling technique in life testing is type Il censoring at

r out of n: n items are simultaneously put on test; the lifetimes of

only the first r items to fall are recorded. 1In cffect, only the first

r order statistices, 'rm <.,.. < T(r)’ are observed from the random sample

T "Tn' of n lifetimes. To estimate the parameters, (91.02,93), of

0
the sampled distribution in F by the method of maximum likelihood, the

basic strategy described in Section 2 for random sampling can be used;
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i.e., likelihood maximization is carried out individually for each of the
four classes, whereupon the largest of the four maxima provides the MLE

(91,92,93). For the sake of brevity, only Class 1 will be considered.

Maximization for the other classes is analogous, and in the case of
'1 Class 4 (the gamma distribution), already worked out by Wilk et al,

(1962).

For convenience, denote by Y, the jth order statistic T The

3 (3’

! (Class 1) likelihood function is

: L - : n:)! rr(): )exp{-_,uj-e_, (kyj)z}[ﬂ()‘yj)] I[L r(e,p) xp{ -\t - O(M:)z}(kt)t’ 1dt]"-r.
n= P

! Following the general approach of Wilk et al, (1962), define ¢ = xyr .

r

r 1/ 2’3 < 2, 2
- » = 9 d -‘-J . Th
P (Ill yj) /yl. s - yj/ryr and t - Yy h:yr en

)

log L = log[
(n-r)l Y

+ np log E~-nlogl'(@,p) + (rp-r) logp-rfs - rogzt

+ (n-r) log J(0,p,F),

vhere J(8,p,f) = j':xp'lexp{ -fx -0(¢ x)z)dx . The equations (3/3p) logL=0,

(3/30) logL = 0, and (3/3¢) logL = 0 sre equivalent, respectively, to

the equations
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prexe { {1 s 2 @) -ntogr- -0 (R 30.0.9)/30.0.0]) @1

-1
=8 [ Ty o F(0) + (-r)E 30,9 +2,6) /3000, | (4.2)

-3 -r-l[ 2reEt-np/E+ (n-r) [J@,p+1,E)+20EJ (0,p +2,E)]/J(9’p,g).l , (4.3)

[ - 3
vhere (3/2p)T(8,p) = exp{-y - 0y’}y* L logydy and (3/20)3(0.0.7) ¢

= ur:xp-lexp{- Ex-0(E x)z] logxdx., The MLEs of p,®, and £ are defined
by the simultaneous solution of the equations (4.1), (4.2) and (4.3).
(Note that the MLE of )\ 1is the MLE of € divided by yr.) However, an
inverse iteration scheme for determining the MLEs is more convenient:

for any assigned p, @, and €, use (4.1) to calculate p, (4.2) to calcu-
late t, and (4.3) with t to calculate s . Continuc with the iteration
process until values of (p, ©, E) are assigned which give resultant
(p,t,s) calculations equal (to a desired degree of accuracy) to the

actual observed values.

(b) Maximum likelihood estimation of the plug.

For a model in F having a bathtub shaped failure rate function a
parameter of interest is the point, T, known as the plug, where the failure

rate function take; on its minimum value, i.e., the point of transition

which separates decreasing failure rate from increasing failure rate., Let

g(+) denote the reciprocal of the failure rate function. Then, as shown

by Glaser (1980),




(4.4)

f ex[-ex-9x2+9 1 d

J P og x }dx

g'(t) = (91+292t-93/t)r t 1 2 5 3 ]-1
exp{ - Olt -6,t" +0, log t}

1f 8, > 0 and 8, < 0, the model has a bathtub shaped failure rate function,

2 3
and the plug 1 is the unique value of t satisfying g'(t) = 0. Since in
this case, g'(t) >0 for t <t and g'(t) <0 for t > 1, computation of
v from (4.4) may proceed by a swift trial and error scheme. Similarly,
if the MLEs, 82 and ;3, obtained either by random sampling or censored
sampling, satisfy 62 > 0 and 83 < 0, then the MLE, ;, of v is the

a ~

A -
solution to g' (1) = 0, where (4.4) is used with (91,92,93) substituted

for (@ 93) .

1%’
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